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Introduction

P ROPER orthogonal decomposition (POD) is a technique to
reduce a high-degree-of-freedom (DOF) � ow� eld representa-

tion to a lower-order system to achieve computational speed. The
challenge in the use of POD for high-speed � ow� elds is capturing
moving shock waves. Current techniques1 that generatePOD-based
reduced-order models (POD/ROMs) for low-speed � ows will not
generate a useful ROM for a high-speed case with moving shocks.
Excessive data and time are required, and the technique does not
track changes in shock location as the boundary conditionsor � ow
parameters change. A new shock-capturingtechnique is developed
to exploit POD for accurately treating moving shock waves. This
technique involves decompositionof the solution domain to isolate
regions that contain shocks.A reduced-ordermodel for each region
is developed independently, and the solution for the entire domain
is formed through a linking of the boundaries of each region. This
technique is applied to a one-dimensional quasi-steady � ow� eld
for demonstration, although it is extendable to higher dimensional
problems requiring either steady or unsteady analysis.2;3

POD/ROM and Discontinuities
POD modes constitute an optimal basis1 for the linear combi-

nation of a set of data (snapshots). These data are collected from
the time evolution of the � ow� eld solution or alternatively from
a collection of steady-state solutions corresponding to variation in
parameters. Initial experimentation showed that POD/ROM could
replicateeither time-accurateor steady motion of shocks in the � ow
if all of the shock locations were sampled by the snapshots. De-
sign iteration with POD/ROMs, however, might require a range of
shock motion outside the original set of candidate snapshots. Be-
cause POD/ROM translatesdiscontinuitiesfrom one location to an-
other by linear addition, the POD/ROM would require modes with
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discontinuitiesat every possible shock location. Such modes result
only when snapshots are obtained for every shock location.

To illustrate these dif� culties, and demonstrate the shock-
capturingtechnique,a quasi-steadyanalysisof POD/ROM for high-
speed � ows with moving shocks was conductedon an inviscid one-
dimensional � ow� eld in a quasi one-dimensional divergent nozzle
(Fig. 1). In a quasi-one-dimensional analysis the area change of the
nozzleis replacedbya forcingfunctionin theone-dimensionalEuler
equations to obtain a solution at the centerlineof the nozzle.4 A nu-
merical solver based on Roe’s scheme provided the solution from
which variousPOD/ROMs were generatedand compared.Subspace
projection and the method of snapshots were employed to obtain
POD/ROMs.5

Small changes in the ratio of speci� c heats (° ) moved the steady-
state shock location incrementally downstream. A POD/ROM
trained with snapshots taken at ° D 1:4 failed to converge to a
steady-statesolutionfor° below1.398.Convergencefailedbecause
the spatial location of the shock for ° < 1:398 was downstream of
the shock location in the snapshots at ° D 1:4. Time integration
of the POD/ROM failed attempting to form a discontinuity from
modes that only supported continuous behavior at this downstream
location. POD/ROMs for high-speed � ows thus require at least one
snapshotfor each grid point traversed by a shock wave, and they are
not robust to parameter changes in the � ow� eld that introduce new
shock behavior.

Domain Decomposition
Domain decomposition refers to separation of the � uid domain

spatially into regions, isolating the region containing the shock
wave. For the regions of the � ow� eld not containing a shock, a
POD/ROM is generated as for low-speed � ow problems. For the
shocked region two alternativeswere investigated.One is use of the
full-order simulation. Although the shocked region will experience
no reduction in the number of DOFs, the nonshocked regions will
experience a signi� cant reduction. Another possibility was the use
of a reduced-ordermodel for the shockedregionof the � ow. Because
the isolated shock domain is now a small portion of the entire solu-
tion domain, snapshot collection is ef� cient, and the reduced-order
model is generated inexpensively.

The domain for the quasi-one-dimensional nozzle problem was
decomposedinto threeregions,as shownin Fig. 2. SectionI included
the region of nozzle inlet downstream prior to the shock, with su-
personic � ow throughout. Section II included the exit of section I
to just downstream of the shock, thus including a supersonic inlet
and a subsonic exit. Section III consisted of the remainder of the
nozzle to the exit and contained all subsonic � ow. For both cases
sections I and III were modeled with POD/ROMs. For section II
both full-order and reduced-ordermodeling were examined.

An implicit non-Galerkin formulation was developed for the
POD/ROM domain decomposition (POD/ROM/DD), which re-
quired a reordering of the full-order solution vector x.t/. Instead

Fig. 1 Quasi-one-dimensionalnozzle.

2360



AIAA JOURNAL, VOL. 40, NO. 11: TECHNICAL NOTES 2361

Fig. 2 Domain decomposition for the quasi-one-dimensional nozzle.

of ordering the � uid variable members of x.t/ as a distribution
across the entire nozzle, xDD.t/ stacked the � uid variables across
each section [see Eq. (2)]. Each of the three sections was treated
as an independent � uid problem governed by xS1 , xS2, and xS3.
POD produced a reduced-order mapping for each section relat-
ing the full-order and reduced-ordersolutions.Reduced-ordervari-
ables (denoted with a caret) were xS1 D 91 ¢ OxS1 , xS2 D 92 ¢ OxS2 , and
xS3 D 93 ¢ OxS3 . For sectionII,modeledat full order, OxS2 D xS2 , and 92

was an identitymapping. Flow variablesat interior boundarieswere
obtained from the adjacent domain. The full-order � ow solver was
adjusted to consider each section independently and was denoted
F[xDD.t/].

An implicit solver was developed using the chord method to ap-
proximatenumerically the Jacobian for Newton iterations.Thethree
domains were solvedsimultaneouslyas three independentproblems
with the Newton iterations.WithsectionII modeledwith POD/ROM
and no domain overlap, a nonphysical discontinuity appeared at
the intersection between sections II and III for ° < 1:4. To enforce
smoothnessat this intersectionwith the implicitsolver,a constrained
optimization technique was developed for use with the reduced-
order solver. Other applications of domain decomposition that use
constrainedoptimizationhave recentlyemergedin the literature.6¡10

In the constrainedoptimizationtechniquesections II and III were
allowed to overlap by a few grid points. A functional `.xDD/ was
de� ned such that d`.xDD/=d xDD D F.xDD/. Minimizing `.xDD/ was
equivalentto solving F.xDD/ D 0 or � nding the steady-statesolution
to the Euler equations. A constraint was introduced to force the
� ow� eld from both sections to match in the overlapping portion of
their respective domains. The constraint included a vector T with
the dimensionsof xDD such that the dot productof xDD with T tended
to zero when the � ow variables for the overlapping sections were
equal. T was formed by placing a 1 in each � uid variable location
correspondingto the overlap in section II, a ¡1 in each overlapping
location in section III, and zeros everywhere else in T. The dot
product of T with xDD resulted in cancellationof the � uid variables
when the overlappingportionof the solutiondomainwas equivalent.
For overlapping� uid variablesthat are not identical, the dot product
is a small scalar residual.

Lagrange constrained optimization minimized `.xDD) subject to
the constraint xDD ¢ T D 0 through the use of a Lagrange multi-
plier ¸, introduced as an additional degree of freedom. Lagrange-
constrainedoptimization11 modi� es`.xDD) byaddingthe linearcon-
straint to form the function Q. y/:

Q. y/ D `.xDD/ C ¸xDD ¢ T (1)

The solution vector is augmented to include ¸:
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The reduced-order mapping was de� ned to include the Lagrange
multiplier:
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which was rewritten as

y D 9¸ Oy (5)

Newton iterations were used to solve the reduced-order system for
Oy. The � ow� ed was obtained by expanding OxS1, OxS2 , and OxS3 with
reduced-order mappings for each section, after which ¸ was dis-
carded. The reduced-order Jacobian was obtained from the full-
order Jacobian:
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Additional implementation details are contained in Lucia et al.12

Results
The implicit methodology successfully produced results for the

POD/ROM/DD with shock regions modeled at both full order and
with POD/ROM. The 250 grid-point full-ordernozzle problem was
divided into three sections: section I had 117 grid points, section
II had 15 grid points plus 2 coincident grid points for a total of
17, and section III had 118 grid points. For the case of section II
modeled at full order with 17 grid points, section I used one mode
per � uid variable,and sectionIII used one mode for both densityand
momentumand two modes for energy.The resultingPOD/ROM/DD
had 58 DOFs, a signi� cant reduction from the original 750. The
second case included a POD/ROM for section II generated from 25
snapshots of steady-state � ow solutions at values of gamma from
1.4 to 1.35. An additional four grid points were added to section
II as overlap with section III. The POD/ROMs for sections I and
III were identical to those for the full-order section II case. Good
results were obtained using 16 modes per � uid variable in section
II. The eigenvaluesassociatedwith these modes showed signi� cant
energy (order 10¡3) in the 16th mode. Energy in the 17th mode was
of order 10¡7 . The resulting POD/ROM/DD had 55 DOFs, 7 for
sections I and III and 48 for section II.

Steady-state solutions from both POD/ROM/DD cases were ob-
tained for ° varied from 1.4 to 1.37. The POD/ROMs for sections
I and III were generated from snapshots taken using ° D 1:4. The
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Fig. 3 Shock motion with varying ° .

density results shown in Fig. 3 show that both POD/ROM/DDs
tracked the quasi-steadyshock motion very closely (within one grid
point).In addition,both POD/ROM/DDs accuratelysolvedthe � ow-
� eld before and after the shock. Density solutions after the shock
for both POD/ROM/DDs exhibited a small error growth as gamma
was steadily decreased, which occurred because the POD/ROMs
for sections I and III were trained at ° D 1:4. Even with the small
error growth, however, the error in densitywas less than 1%. Errors
in density before the shock for both POD/ROM/DDs exhibited a
slightly larger error growth (about 2%).

Conclusions
In high-speed � ows shock movement can result in the failure of

conventional POD/ROM to arrive at a solution. In these cases the
POD/ROM will gounstableattemptingto formthe shockif theshock
location is not captured in the snapshots. A new domain decom-
position shock-capturing approach was developed to treat moving
shocks.The accuracyand order reductionof the domaindecomposi-
tion approach was demonstrated for quasi-one-dimensional nozzle
� ow. The nonshocked regions of this � ow� eld were modeled with
POD/ROM trained for ° D 1:4: The shocked region of the � ow� eld
was modeled both by POD/ROM and by the full-order computa-
tional � uid dynamics model adapted for this region. The accuracy
of both models was examined for quasi-steady shock motion as °
was varied from 1.4 to 1.37. Both cases produced accurate � ow-
� elds and shock motion. Flow� eld errors were less than 2%, and
the shock movement was tracked within one grid point of the true
shock location.

Both methods exhibited similar order reduction.The full-order
solution had 750 DOFs, the POD/ROM/DD with a full-ordershock
region had 58 DOFs, and the POD/ROM/DD with a POD/ROM for
the shock region had 55 DOFs. Sixteen modes per � uid variable
were required for POD/ROM in the shocked region, resulting in a
small-order reduction relative to the full-order shock case. Because
of the computationalexpense of generating snapshots and the large
number of modes required, there are no advantages in using
POD/ROM for the shocked region for this one-dimensional case.
In two- and three-dimensional cases, however, there will be a sig-
ni� cant order reduction gained with a POD/ROM for the regions
containing shocks.2;3 The encouraging news from this research is
that a small set of DOFs exists that can accurately handle the mov-
ing shock case. Future research should focus on ef� cient methods
of solving for these modal coef� cients.
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Introduction

L INEAR time-variantequations,such as the Mathieu–Hill equa-
tion, occur in many applications,such as dynamic buckling of

structures and wave propagation in periodic media. Periodic varia-
tion of parameters in mechanicaldevices is also common, such as in
the meshing of spur gears.1 One can come across exponentialor hy-
perbolic functions in the coef� cients of the differential equation of
motionof cableswith varyinglength.Analyticalproceduresadopted
to solve these typesof equationsinvolvecomplexmathematics,even
for a one-dimensional problem.2 Another instance of an exponen-
tial variation in system parameters is in structures with an adaptive
nature. For example, the active control of the stiffness of vehicle
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